If it's not what You are looking for type in the equation solver your own equation and let us solve it.
55z^2+735z=0
a = 55; b = 735; c = 0;
Δ = b2-4ac
Δ = 7352-4·55·0
Δ = 540225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{540225}=735$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(735)-735}{2*55}=\frac{-1470}{110} =-13+4/11 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(735)+735}{2*55}=\frac{0}{110} =0 $
| -3+4n=3n-1 | | 5.3-2r=8.7 | | x+12=2x-14 | | 24+2x/4-1=2x+3/3 | | -7+b/8=13 | | -7+b/8=14 | | 148=-6(5x+6)+4 | | 4+12x+15=51 | | 3x+18+7x-12=180 | | 16-2l=12 | | -17=3=k | | -5+3/2x=4 | | 6+1x=26 | | 10+2/x=3 | | 37x+12-x+14=94x-7+5 | | 344.50(x)=29x+54.5 | | 40+8v=2(v-1) | | 200x=112.5x | | 2/3m+2=7-1/2m | | 10n=120,n=10 | | 6s+5=5s+3 | | 2x=17/2 | | 13-8-7n-8n=-5n-5n | | x2+x-20=104 | | r^2-9r-136=0 | | -93=6(x-8)-3 | | 4x-3x-8+8=X | | 7+9x=22+4x | | x^2+x-20=104 | | 6a^2+9a-80=0 | | x-1.24=-6 | | -92=-7(v+8)-5v |